Repetitive sequence-derived markers tag centromeres and telomeres and provide insights into chromosome evolution in Brassica napus


    loading  Checking for direct PDF access through Ovid

Abstract

Centromeres and telomeres are obvious markers on chromosomes but their location on genetic maps is difficult to determine, which hampers many basic and applied research programmes. In this study, we used the characteristic distribution of five Brassica repeated sequences to generate physically anchored molecular markers tentatively tagging Brassica centromeres (84 markers) and telomeres (31 markers). These markers were mapped to the existing oilseed rape genetic map. Clusters of centromere-related loci were observed on 14 linkage groups; in addition to previous reports, we could thus provide information about the most likely position of centromeres on 17 of the 19 B. napus linkage groups. The location of centromeres on linkage groups usually matches their position on chromosomes and coincides with sites of evolutionary breakage between chromosomes. Most telomere sequence-derived markers mapped interstitially or in the proximity of centromeres; this result echoes previous reports on many eukaryote genomes and may reflect different forms of chromosome evolution. Seven telomere sequence-derived markers were located at the outermost positions of seven linkage groups and therefore probably tagged telomeres.

    loading  Loading Related Articles