Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement

    loading  Checking for direct PDF access through Ovid


Background—Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR.Methods and Results—We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P<0.001) and an increase in valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm2, P<0.001). No procedural complications were reported.Conclusions—BVF can be performed safely in small surgical valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area.

    loading  Loading Related Articles