Transcription Factor 7-like 2 Mediates Canonical Wnt/β-Catenin Signaling and c-Myc Upregulation in Heart Failure

    loading  Checking for direct PDF access through Ovid

Abstract

Background—

How canonical Wnt/β-catenin signals in adult hearts, especially in different diseased states, remains unclear. The proto-oncogene, c-Myc, is a Wnt target and an early response gene during cardiac stress. It is not clear whether c-Myc is activated or how it is regulated during heart failure.

Methods and Results—

We investigated canonical Wnt/β-catenin signaling and how it regulated c-Myc expression in failing hearts of human ischemic heart disease, idiopathic dilated cardiomyopathy, and murine desmin–related cardiomyopathy. Our data demonstrated that canonical Wnt/β-catenin signaling was activated through nuclear accumulation of β-catenin in idiopathic dilated cardiomyopathy, ischemic heart disease, and murine desmin–related cardiomyopathy when compared with nonfailing controls and transcription factor 7-like 2 (TCF7L2) was the main β-catenin partner of the T-cell factor (TCF) family in adult hearts. We further revealed that c-Myc mRNA and protein levels were significantly elevated in failing hearts by real-time reverse transcription polymerase chain reaction, Western blotting, and immunohistochemical staining. Immunoprecipitation and confocal microscopy further showed that β-catenin interacted and colocalized with TCF7L2. More importantly, chromatin immunoprecipitation confirmed that β-catenin and TCF7L2 were recruited to the regulatory elements of c-Myc. This recruitment was associated with increased histone H3 acetylation and transcriptional upregulation of c-Myc. With lentiviral infection, TCF7L2 overexpression increased c-Myc expression and cardiomyocyte size, whereas shRNA-mediated knockdown of TCF7L2 suppressed c-Myc expression and cardiomyocyte growth in cultured neonatal rat cardiomyocytes.

Conclusions—

This study indicates that TCF7L2 mediates canonic Wnt/β-catenin signaling and c-Myc upregulation during abnormal cardiac remodeling in heart failure and suppression of Wnt/β-catenin to c-Myc axis can be explored for preventing and treating heart failure.

Related Topics

    loading  Loading Related Articles