Assessment of the Immediate Effects of Cardiopulmonary Bypass on Left Ventricular Performance by On-line Pressure-Area Relations

    loading  Checking for direct PDF access through Ovid

Abstract

Background

Pressure-volume relations have been established as useful measures of left ventricular (LV) performance. Application of these methods to the intraoperative setting have been limited because of difficulties acquiring LV volume data. Transesophageal echocardiographic automated border detection can measure LV cross-sectional area as an index of volume, which can be coupled with pressure data to construct pressure-area loops on-line. The purpose of this study was to evaluate intraoperative LV performance in patients undergoing coronary bypass surgery before and immediately after cardiopulmonary bypass using on-line pressurearea relations.

Methods and Results

Studies were attempted in 13 consecutive patients. Simultaneous measures of LV cross-sectional area, LV pressure, and electromagnetic flow probe-derived aortic flow recorded on a computer work station interfaced with the ultrasound system. Pressure-area loops were compared with simultaneous pressure-volume loops constructed from pressure and flow data during inferior vena caval occlusions before and after bypass. Pressure-volume calculations (end-systolic elastance, maximal elastance, and preload- recruitable stroke work) were then applied to pressurearea loops with area substituted for volume data. Changes in stroke force from pressure-area loops were closely correlated with changes in estimates of stroke work from pressurevolume loops for individual patients before bypass (r = .99± .03, SEE=5±2%, n=10) and after bypass (r = .96±.05, SEE=5±2%, n=9). Pressure-area estimates of end-systolic elastance, maximal elastance, and preload-recruitable stroke force decreased significantly from before to after cardiopulmonary bypass in the 7 patients with paired data sets. Load-dependent measures of LV function (stroke volume, cardiac output, and fractional area change) were unchanged after surgery in these same patients.

Conclusions

Intraoperative pressure-area loops may be acquired and displayed on-line using transesophageal echocardiographic automated border detection and readily analyzed in a manner similar to pressure-volume loops. LV performance was depressed immediately after cardiopulmonary bypass compared with before. On-line pressure-area relations may be clinically useful to assess LV performance in patients undergoing cardiac surgery in whom load and contractility may be expected to vary rapidly.

Related Topics

    loading  Loading Related Articles