Recombinant human IL-16 inhibits HIV-1 replication and protects against activation-induced cell death (AICD)

    loading  Checking for direct PDF access through Ovid

Abstract

SUMMARY

The chemoattractant cytokine IL-16 has been reported to suppress lymphocyte activation and to inhibit HIV-1 replication in acutely infected T cells. We have cloned and expressed human IL-16 in Escherichia coli and investigated whether the recombinant protein could regulate the level of lymphocyte apoptosis from HIV-1-infected subjects. After purification and refolding, only 2-10% of the recombinant cytokine was present in a biologically active homotetrameric form. This could explain the need for high concentrations of the bacterially derived IL-16 to induce significant inhibition of HIV-1 replication. Addition of IL-16 to unstimulated peripheral blood mononuclear cell (PBMC) cultures from HIV-1-infected subjects did not modify the observed level of spontaneous lymphocyte apoptosis. In contrast, IL-16 added to PBMC cultures stimulated with anti-CD3, anti-CD95 or dexamethasone reduced significantly the percentage of lymphocytes undergoing AICD. This effect was found to correlate with the ability of the cytokine to decrease CD95 expression on activated CD4+ T cells. Comparative studies on PBMC from healthy individuals indicated that the regulation of apoptosis levels by IL-16 is a complex phenomenon and could depend on the nature of the activator used and/or the immune status of lymphocytes tested. The outcome of CD4 cross-linking on T cells by various ligands is discussed in the context of the observed beneficial activities of IL-16 and its potential role in the treatment of HIV disease.

Related Topics

    loading  Loading Related Articles