Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids – differencesin vivoandin vitro

    loading  Checking for direct PDF access through Ovid

Abstract

Summary

Allergen-specific immunotherapy (SIT) is a clinically effective therapy for immunoglobulin (Ig)E-mediated allergic diseases. To reduce the risk of IgE-mediated side effects, chemically modified allergoids have been introduced. Furthermore, adsorbance of allergens to aluminium hydroxide (alum) is widely used to enhance the immune response. The mechanisms behind the adjuvant effect of alum are still not completely understood. In the present study we analysed the effects of alum-adsorbed allergens and allergoids on their immunogenicityin vitroandin vivoand their ability to activate basophils of allergic donors. Human monocyte derived dendritic cells (DC) were incubated with nativePhleum pratenseorBetula verrucosaallergen extract or formaldehyde- or glutaraldehyde-modified allergoids, adsorbed or unadsorbed to alum. After maturation, DC were co-cultivated with autologous CD4+ T cells. Allergenicity was tested by leukotriene and histamine release of human basophils. Finally,in-vivoimmunogenicity was analysed by IgG production of immunized mice. T cell proliferation as well as interleukin (IL)-4, IL-13, IL-10 and interferon (IFN)-γ production were strongly decreased using glutaraldehyde-modified allergoids, but did not differ between alum-adsorbed allergens or allergoids and the corresponding unadsorbed preparations. Glutaraldehyde modification also led to a decreased leukotriene and histamine release compared to native allergens, being further decreased by adsorption to alum.In vivo, immunogenicity was reduced for allergoids which could be partly restored by adsorption to alum. Our results suggest that adsorption of native allergens or modified allergoids to alum had no consistent adjuvant effect but led to a reduced allergenicityin vitro, while we observed an adjuvant effect regarding IgG productionin vivo.

Related Topics

    loading  Loading Related Articles