Vertebroplasty: Patient and treatment variations studied through parametric computational models

    loading  Checking for direct PDF access through Ovid



Vertebroplasty is increasingly used in the treatment of vertebral compression fractures. However there are concerns that this intervention may lead to further fractures in the adjacent vertebral segments. This study was designed to parametrically assess the influence of both treatment factors (cement volume and number of augmentations), and patient factors (bone and disc quality) on the biomechanical effects of vertebroplasty.


Specimen-specific finite element models of two experimentally-tested human three-vertebral-segments were developed from CT-scan data. Cement augmentation at one and two levels was represented in the respective models and good agreement in the predicted stiffness was found compared to the corresponding experimental specimens. Parametric variations of key variables associated with the procedure were then studied.


The segmental stiffness increased with disc degeneration, with increasing bone quality and to a lesser extent with increasing cement volume. Cement modulus did not have a great influence on the overall segmental stiffness and on the change in the elemental stress in the adjoining vertebrae. However, following augmentation, the stress distribution in the adjacent vertebra changed, indicating possible load redistribution effects of vertebroplasty.


This study demonstrates the importance of patient factors in the outcomes of vertebroplasty and suggests that these may be one reason for the variation in clinical results.

Related Topics

    loading  Loading Related Articles