The immunotherapeutic potential of dendritic cells in type 1 diabetes


    loading  Checking for direct PDF access through Ovid

Abstract

SummaryType 1 diabetes is an autoimmune disease characterized by destruction of the pancreatic islet beta cells that is mediated primarily by T cells specific for beta cell antigens. Insulin administration prolongs the life of affected individuals, but often fails to prevent the serious complications that decrease quality of life and result in significant morbidity and mortality. Thus, new strategies for the prevention and treatment of this disease are warranted. Given the important role of dendritic cells (DCs) in the establishment of peripheral T cell tolerance, DC-based strategies are a rational and exciting avenue of exploration. DCs employ a diverse arsenal to maintain tolerance, including the induction of T cell deletion or anergy and the generation and expansion of regulatory T cell populations. Here we review DC-based immunotherapeutic approaches to type 1 diabetes, most of which have been employed in non-obese diabetic (NOD) mice or other murine models of the disease. These strategies include administration of in vitro-generated DCs, deliberate exposure of DCs to antigens before transfer and the targeting of antigens to DCs in vivo. Although remarkable results have often been obtained in these model systems, the challenge now is to translate DC-based immunotherapeutic strategies to humans, while at the same time minimizing the potential for global immunosuppression or exacerbation of autoimmune responses. In this review, we have devoted considerable attention to antigen-specific DC-based approaches, as results from murine models suggest that they have the potential to result in regulatory T cell populations capable of both preventing and reversing type 1 diabetes.

    loading  Loading Related Articles