Block of AIDS-Kaposi's Sarcoma (KS) Cell Growth, Angiogenesis, and Lesion Formation in Nude Mice by Antisense Oligonucleotide Targeting Basic Fibroblast Growth Factor: A Novel Strategy for the Therapy of KS

    loading  Checking for direct PDF access through Ovid


Kaposi's sarcoma (KS) is the most frequent tumor of HIV-1-infected individuals (AIDS-KS). Typical features of KS are proliferating spindle-shaped cells, considered to be the tumor cells of KS, and endothelial cells forming blood vessels. Basic fibroblast growth factor (bFGF), a potent angiogenic factor, is highly expressed by KS spindle cells in vivo and after injection in nude mice it induces vascular lesions closely resembling early KS in humans. Similar lesions are induced by inoculating nude mice with cultured spindle cells from AIDS-KS lesions (AIDS-KS cells) which produce and release bFGF. Here we show that phosphorothioate antisense (AS) oligonucleotides directed against bFGF mRNA (ASbFGF) inhibit both the growth of AIDS-KS cells derived from different patients and the angiogenic activity associated with these cells, including the induction of KS-like lesions in nude mice. These effects are due to the block of the production of bFGF which is required by AIDS-KS cells to enter the cell cycle and which, after release, mediates angiogenesis. The effects of ASbFGF are specific, dose dependent, achieved at low (0.1-1 micromolars), nontoxic, oligomer concentrations, and are reversed by the addition of bFGF to the cells, suggesting that ASbFGF oligomers are promising drug candidates for KS therapy. (J. Clin. Invest. 1994. 94:1736-1746.) Key words: endothelial cells. cell invasion. cell cycle

    loading  Loading Related Articles