Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria


    loading  Checking for direct PDF access through Ovid

Abstract

Acute porphyrias are inherited disorders caused by partial deficiency of specific heme biosynthesis enzymes.Clinically, porphyrias are manifested by a neuropsychiatric syndrome that includes peripheral neuropathy. Although much is known about the porphyrias' enzyme defects and their biochemical consequences, the cause of the neurological manifestations remains unresolved. We have studied porphyric neuropathy in mice with a partial deficiency of porphobilinogen deaminase (PBGD). PBGD-deficient mice (PBGD (-/-)) imitate acute porphyria through massive induction of hepatic [small delta, Greek]-aminolevulinic acid synthase by drugs such as phenobarbital. Here we show that PBGD-/- mice develop impairment of motor coordination and muscle weakness. Histologically femoral nerves of PBGD-/- mice exhibit a marked decrease in large-caliber (>8 [micro sign]m) axons and ultrastructural changes consistent with primary motor axon degeneration, secondary Schwann cell reactions, and axonal regeneration. These findings resemble those found in studies of affected nerves of patients with acute porphyria and thus provide strong evidence that PBGD deficiency causes degeneration of motor axons without signs of primary demyelination, thereby resolving a long-standing controversy. Interestingly, the neuropathy in PBGD-/- mice developed chronically and progressively and in the presence of normal or only slightly (twofold) increased plasma and urinary levels of the putative neurotoxic heme precursor [small delta, Greek]-aminolevulinic acid. These data suggest that heme deficiency and consequent dysfunction of hemeproteins can cause porphyric neuropathy.J.Clin. Invest. 103:1127-1134 (1999).

    loading  Loading Related Articles