The prostaglandin E2 EP1 receptor mediates pain perception and regulates blood pressure


    loading  Checking for direct PDF access through Ovid

Abstract

The lipid mediator prostaglandin E2 (PGE2) has diverse biological activity in a variety of tissues. Four different receptor subtypes (EP1-4) mediate these wide-ranging effects. The EP-receptor subtypes differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To identify the physiological roles for one of these receptors, the EP1 receptor, we generated EP1-deficient (EP1−/−) mice using homologous recombination in embryonic stem cells derived from the DBA/1lacJ strain of mice. The EP1−/− mice are healthy and fertile, without any overt physical defects. However, their pain-sensitivity responses, tested in two acute prostaglandin-dependent models, were reduced by approximately 50%. This reduction in the perception of pain was virtually identical to that achieved through pharmacological inhibition of prostaglandin synthesis in wild-type mice using a cyclooxygenase inhibitor. In addition, systolic blood pressure is significantly reduced in EP1 receptor-deficient mice and accompanied by increased renin-angiotensin activity, especially in males, suggesting a role for this receptor in cardiovascular homeostasis. Thus, the EP1 receptor for PGE2 plays a direct role in mediating algesia and in regulation of blood pressure.

    loading  Loading Related Articles