Improving acute kidney injury diagnostics using predictive analytics

    loading  Checking for direct PDF access through Ovid


Purpose of review

Acute kidney injury (AKI) is a multifactorial syndrome affecting an alarming proportion of hospitalized patients. Although early recognition may expedite management, the ability to identify patients at-risk and those suffering real-time injury is inconsistent. The review will summarize the recent reports describing advancements in the area of AKI epidemiology, specifically focusing on risk scoring and predictive analytics.

Recent findings

In the critical care population, the primary underlying factors limiting prediction models include an inability to properly account for patient heterogeneity and underperforming metrics used to assess kidney function. Severity of illness scores demonstrate limited AKI predictive performance. Recent evidence suggests traditional methods for detecting AKI may be leveraged and ultimately replaced by newer, more sophisticated analytical tools capable of prediction and identification: risk stratification, novel AKI biomarkers, and clinical information systems. Additionally, the utility of novel biomarkers may be optimized through targeting using patient context, and may provide more granular information about the injury phenotype. Finally, manipulation of the electronic health record allows for real-time recognition of injury.


Integrating a high-functioning clinical information system with risk stratification methodology and novel biomarker yields a predictive analytic model for AKI diagnostics.

Related Topics

    loading  Loading Related Articles