Postprandial remnant lipoproteins as targets for the prevention of atherosclerosis

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose of review

Oxidized low-density lipoprotein (Ox-LDL) and chylomicron remnants were previously proposed as the most atherogenic lipoproteins for the causal lipoproteins of atherosclerosis. However, there are still controversies on these hypothesizes. Therefore, we have proposed a new hypothesis based on our recent findings of remnant lipoproteins (RLPs) in postprandial plasma.

Recent findings

Plasma RLP-C and RLP-TG increased significantly after fat load. More than 80% of the increased triglycerides after fat load consisted of the triglycerides in RLP, which contained greater amount of apoB100 than apoB48 particles as mostly very low density lipoproteins (VLDL) remnants. The majority of lipoprotein lipase (LPL) in plasma was found in RLP as RLP-LPL complex, which is released into circulation after hydrolysis. LPL activity and concentration in plasma did not increase after food intake associated with the insufficient hydrolysis of chylomicrons and VLDL and resulted in the significant increase of RLP-TG. Plasma LPL was inversely correlated with RLP particle size and number.

Summary

VLDL remnants have been shown as the major atherogenic lipoproteins in postprandial plasma associated with LPL activity as the targets for prevention of atherosclerosis. We also proposed a new definition of RLPs, ‘LPL bound TG-rich lipoproteins’ based on the findings of RLP-LPL complex.

Related Topics

    loading  Loading Related Articles