On unbiased backtransform of lognormal kriging estimates


    loading  Checking for direct PDF access through Ovid

Abstract

Lognormal kriging is an estimation technique that was devised for handling highly skewed data distributions. This technique takes advantage of a logarithmic transformation that reduces the data variance. However, backtransformed lognormal kriging estimates are biased because the nonbias term is totally dependent on a semivariogram model. This paper proposes a new approach for backtransforming lognormal kriging estimates that not only presents none of the problems reported in the literature but also reproduces the sample histogram and, consequently, the sample mean.

    loading  Loading Related Articles