Smoothing Newton and Quasi-Newton Methods for Mixed Complementarity Problems


    loading  Checking for direct PDF access through Ovid

Abstract

The mixed complementarity problem can be reformulated as a nonsmooth equation by using the median operator. In this paper, we first study some useful properties of this reformulation and then derive the Chen-Harker-Kanzow-Smale smoothing function for the mixed complementarity problem. On the basis of this smoothing function, we present a smoothing Newton method for solving the mixed complementarity problem. Under suitable conditions, the method exhibits global and quadratic convergence properties. We also present a smoothing Broyden-like method based on the same smoothing function. Under appropriate conditions, the method converges globally and superlinearly.

    loading  Loading Related Articles