Nanosystem drug targeting: Facing up to complex realities

    loading  Checking for direct PDF access through Ovid


This review considers some of the obstacles to successful drug targeting and delivery of therapeutic agents to desired target sites in the body, in the context of the sometimes overblown claims made for nanoparticle and nanosystem based delivery. It covers aspects of issues surrounding the instability of particles in vivo through flocculation and aggregation, their complex flow and adhesion patterns in the capillary network, particle jamming and bridging, the heterogeneity of access of drugs to some sites such as tumours even in their free molecular state, the diffusion of free drug and nanoparticles in tumour tissue and in single cells. There are the fundamental laws of physics and materials, especially in relation to diffusion, adsorption, adhesion and hydrodynamics, which apply and these cannot be denied in our attempts to target carriers to anatomically distant targets, tumours being the archetypal target experiencing most of the barriers which prevent quantitative carrier and hence drug uptake. The paper closes with a discussion of some of the unmet challenges which must be addressed before quantitative delivery and targeting is achieved in many disease states. It is clear that if progress is to be made an International System for testing nanoparticulate delivery systems should be established. In this way data from different laboratories will be comparable. The International protocol should cover both in vitro and in vivo testing.Graphical abstractThis review considers the obstacles to successful drug delivery to targets by means of nanoparticles and other constructs dealing inter alia with nanoparticle instability, drug release, the stochastic nature of nanoparticle–receptor interactions, flow and diffusion of nanoparticles and the heterogeneous distribution of drugs in targets such as tumors.

    loading  Loading Related Articles