Effect of injection site onin situimplant formation and drug releasein vivo


    loading  Checking for direct PDF access through Ovid

Abstract

In situ forming drug delivery implants offer an attractive alternative to pre-formed implant devices for local drug delivery due to their ability to deliver fragile drugs, simple manufacturing process, and less invasive placement. However, the clinical translation of these systems has been hampered, in part, by poor correlation between in vitro and in vivo drug release profiles. To better understand this effect, the behavior of poly(D,L-lactide-co-glycolide) (PLGA) in situ forming implants was examined in vitro and in vivo after subcutaneous injection as well as injection into necrotic, non-necrotic, and ablated tumor. Implant formation was quantified noninvasively using an ultrasound imaging technique. Drug release of a model drug agent, fluorescein, was correlated with phase inversion in different environments. Results demonstrated that burst drug release in vivo was greater than in vitro for all implant formulations. Drug release from implants in varying in vivo environments was fastest in ablated tumor followed by implants in non-necrotic tumor, in subcutaneous tissue, and finally in necrotic tumor tissue with 50% of the loading drug mass released in 0.7, 0.9, 9.7, and 12.7 h respectively. Implants in stiffer ablated and non-necrotic tumor tissue showed much faster drug release than implants in more compliant subcutaneous and necrotic tumor environments. Finally, implant formation examined using ultrasound confirmed that in vivo the process of precipitation (phase inversion) was directly proportional to drug release. These findings suggest that not only is drug release dependent on implant formation but that external environmental effects, such as tissue mechanical properties, may explain the differences seen between in vivo and in vitro drug release from in situ forming implants.Graphical AbstractEffects of external environment on drug release and implant shape of in situ forming implants is shown.

    loading  Loading Related Articles