Polyalkylcyanoacrylates asin situformed diffusion barriers in multimaterial drug carriers


    loading  Checking for direct PDF access through Ovid

Abstract

Polymeric hydrogels typically release their drug payload rapidly due to their high water content and the diffusivity for drug molecules. This study proposes a multimaterial system to sustain the release by covering the hydrogel with a poly(alkyl-2-cyanoacrylate) [PACA]-based film, which should be formed by an in situ polymerization on the hydrogel surface initiated upon contact with water. A series of PACA-hydrogel hybrid systems with increasing PACA side chain hydrophobicity was prepared using physically crosslinked alginate films and hydrophilic diclofenac sodium as model hydrogel/drug system. Successful synthesis of PACA at the hydrogel surface was confirmed and the PACA layer was identified to be most homogeneous for poly(n-butyl-2-cyanoacrylate) on both the micro- and nanolevel. At the same time, the diclofenac release from the hybrid systems was substantially sustained from ˜1 day for unmodified hydrogels up to >14 days depending on the type of PACA employed as diffusion barrier. Overall, in situ polymerized PACA films on hydrogels may be widely applicable to various hydrogel matrices, different matrix sizes as well as more complex shaped hydrogel carriers.Graphical abstractIn situ polymerization of alkylcyanoacrylate forming membranes on alginate hydrogels create diffusion barriers to sustain drug release. The concept may be applied to various hydrogel types and shapes.

    loading  Loading Related Articles