Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy


    loading  Checking for direct PDF access through Ovid

Abstract

Hyaluronic acid (HA)-based doxorubicin (DOX) nanoparticles (HA-NPs) were fabricated via ion-pairing between positively charged DOX and negatively charged HA, which displayed near-spherical shapes with an average size distribution of 180.2 nm (PDI = 0.184). Next, HA-NPs were encapsulated in liposomal carriers to afford HA-based DOX liposomes (HA-LPs), which also showed near-spherical morphology with an average size of 130.5 nm (PDI = 0.201). HA-NPs and HA-LPs displayed desirable sustained-release profiles compared to free DOX, and moreover, HA-LPs were proven to prevent premature release of DOX from HA-NPs. Cell based studies demonstrated HA-NPs and HA-LPs were selectively taken up by CD44+ tumor cells, and DOX was released intracellularly to target the cell nuclei. Both HA-NPs and HA-LPs showed comparable levels of penetration efficiency in tumor spheroids. In vivo studies revealed that HA-NPs and HA-LPs significantly prolonged the blood circulation time of DOX, decreased accumulation in the normal tissues and enriched drugs into the tumors. Furthermore, HA-NPs and HA-LPs greatly enhanced therapeutic efficacy of DOX in tumor-bearing mice and minimized systemic toxicity against vital organs. In sum, HA-NPs and HA-LPs represent promising nanocarriers for CD44+ tumor-targeted delivery.Graphical abstractHA-NPs and HA-LPs have been developed to be selectively taken up by CD44+ tumor cells, which greatly improved antitumor efficacy and reduced systemic adverse effects in treating CD44+ cancer.

    loading  Loading Related Articles