Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer


    loading  Checking for direct PDF access through Ovid

Abstract

Clinically, combined therapy of cisplatin (CDDP) and metformin is an effective treatment for non-small cell lung cancer (NSCLC). The success is attributed to synergistic effects between the two drugs. Therefore, we hypothesize that co-encapsulation of CDDP and metformin will avoid the prominent toxicity of CDDP while maintaining the synergy between the regimens. CDDP was first conjugated to polyglutamic acid (PGA) to form anionic PGA-CDDP which was electrostatically complexed with the cationic polymeric metformin (polymet). The nano-sized complex was then stabilized with cationic liposomes composed of DOTAP (2, 3-Dioleoyloxy-propyl)-trimethylammonium/Cholesterol/DSPE-PEG-anisamide aminoethyl. Both in vitro and in vivo experiments confirmed the synergy between polymet and CDDP. CDDP delivered with nanoparticles (NPs) exhibited significantly increased tumor accumulation over free CDDP and suppressed tumor growth through apoptosis in NSCLC H460 tumor-bearing mice without nephrotoxicity. The synergistic effect of polymet alongside CDDP demonstrates that polymet-CDDP NPs can activate the AMP-activated protein kinase α (AMPKα) pathway and inhibit mammalian target rapamycin (mTOR) activity to enhance growth suppression. In all, this platform is the first to successfully co-load polymet, a polymeric metformin, and CDDP into the same nanoparticle for successful treatment of NSCLC.Graphical abstractCore-membrane nanoparticles for the co-loading of cisplatin and polymeric metformin to treat NSCLC while mitigating toxicities.

    loading  Loading Related Articles