Controlled release strategy designed for intravitreal protein delivery to the retina


    loading  Checking for direct PDF access through Ovid

Abstract

Therapeutic protein delivery directly to the eye is a promising strategy to treat retinal degeneration; yet, the high risks of local drug overdose and cataracts associated with bolus injection have limited progress, requiring the development of sustained protein delivery strategies. Since the vitreous humor itself is a gel, hydrogel-based release systems are a sensible solution for sustained intravitreal protein delivery. Using ciliary neurotrophic factor (CNTF) as a model protein for ocular treatment, we investigated the use of an intravitreal, affinity-based release system for protein delivery. To sustain CNTF release, we took advantage of the affinity between Src homology 3 (SH3) and its peptide binding partners: CNTF was expressed as a fusion protein with SH3, and a thermogel of hyaluronan and methylcellulose (HAMC) was modified with SH3 binding peptides. Using a mathematical model, the hydrogel composition was successfully designed to release CNTF-SH3 over 7 days. The stability and bioactivity of the released protein were similar to those of commercial CNTF. Intravitreal injections of the bioengineered thermogel showed successful delivery of CNTF-SH3 to the mouse retina, with expected transient downregulation of phototransduction genes (e.g., rhodopsin, S-opsin, M-opsin, Gnat 1 and 2), upregulation of STAT1 and STAT3 expression, and upregulation of STAT3 phosphorylation. This constitutes the first demonstration of intravitreal protein release from a hydrogel. Immunohistochemical analysis of the retinal tissues of injected eyes confirmed the biocompatibility of the delivery vehicle, paving the way towards new intravitreal protein delivery strategies.

    loading  Loading Related Articles