Membrane potentials regulating GPCRs: insights from experiments and molecular dynamics simulations

    loading  Checking for direct PDF access through Ovid

Abstract

G-protein coupled receptors (GPCRs) form the largest class of membrane proteins in humans and the targets of most present drugs. Membrane potential is one of the defining characteristics of living cells. Recent work has shown that the membrane voltage, and changes thereof, modulates signal transduction and ligand binding in GPCRs. As it may allow differential signalling patterns depending on tissue, cell type, and the excitation status of excitable cells, GPCR voltage sensitivity could have important implications for their pharmacology. This review summarises recent experimental insights on GPCR voltage regulation and the role of molecular dynamics simulations in identifying the structural basis of GPCR voltage-sensing. We discuss the potential significance for drug design on GPCR targets from excitable and non-excitable cells.

Related Topics

    loading  Loading Related Articles