Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Remodeling and Pulmonary Hypertension

    loading  Checking for direct PDF access through Ovid

Abstract

Rationale:

Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca2+m levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function.

Objective:

We hypothesized that UCP2 deficiency reduces Ca2+m in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension.

Methods and Results:

Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca2+ release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca2+-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs’ cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia.

Conclusions:

This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.

Related Topics

    loading  Loading Related Articles