Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell–Derived Cardiomyocytes

    loading  Checking for direct PDF access through Ovid

Abstract

Rationale:

The lack of measurable single-cell contractility of human-induced pluripotent stem cell–derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery.

Objective:

To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs.

Methods and Results:

Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1:60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (INa).

Conclusions:

The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing.

Related Topics

    loading  Loading Related Articles