logo
Print

The Cross-Modal Interaction Between Pain-Related and Saccade-Related Cerebral Activation: A Preliminary Study by Event-Related Functional Magnetic Resonance Imaging

    loading  Checking for direct PDF access through Ovid

Abstract

Pain-related cerebral activation in functional magnetic resonance imaging shows less consistent signals that decay earlier than in conventional task-related activation. This may result from pain’s top-down inhibition mediated by cognitive or hemodynamic interaction that could affect activation by other modalities. Using event-related functional magnetic resonance imaging, we examined whether pain affects cerebral activation by a saccade task through such cross-modal interaction. Six right-handed volunteers underwent whole-brain echo-planar imaging on a 3.0 T magnetic resonance imaging scanner while they received thermal pain stimulus at 50°C on the right forearm (P; n = 6), performed a visually guided saccade task (V; n = 6), and went through a simultaneous pain-plus-saccade paradigm (PV; n = 5). Averaged functional activation maps were synthesized and signal time courses were analyzed at activation clusters. P activated the bilateral secondary somatosensory cortex (S2). V activated the posterior, supplementary, frontal eye fields, and visual areas. PV enhanced the S2 activation and activated additional pain-related areas, including the bilateral premotor area, right insula, anterior, and posterior cingulate cortices. In contrast, V-related activation was attenuated in PV. We propose that pain caused cross-modal suppression on the oculomotor activity and that an oculomotor task enhanced pain-related activation by triggering attention toward pain.

Related Topics

    loading  Loading Related Articles

Join Ovid Insights!

Benefits of Ovid Insights Include:

  • Consolidated email digests of the latest research in your favorite topics
  • A personalized dashboard of your topics all on one page 
  • Tools to bookmark and share articles of interest
  • Ability to customize and save your own searches

Register with Ovid Insights »