Do Standard Monitoring Sites Reflect True Brain Temperature When Profound Hypothermia Is Rapidly Induced and Reversed?

    loading  Checking for direct PDF access through Ovid

Abstract

Background

Brain temperature is closely approximated by most body temperature measurements under normal anesthetic conditions. However, when thermal autoregulation is overridden, large temperature gradients may prevail. This study sought to determine which of the standard temperature monitoring sites best approximates brain temperature when deep hypothermia is rapidly induced and reversed during cardiopulmonary bypass.

Methods

Twenty-seven patients underwent cardiopulmonary bypass and deep hypothermic circulatory arrest in order for each to have a giant cerebral aneurysm surgically clipped. Brain temperatures were measured directly with a thermocouple embedded in the cerebral cortex. Eight other body temperatures were monitored simultaneously with less invasive sensors at standard sites.

Results

Brain temperature decreased from 32.6 + 1.4 degrees Celsius (mean plus/minus SD) to 16.7 plus/minus 1.7 degrees Celsius in 28 plus/minus 7 min, for an average cerebral cooling rate of 0.59 + 0.15 degree Celsius/min. Circulatory arrest lasted 24 plus/minus 15 min and was followed by 63 + 17 min of rewarming at 0.31 plus/minus 0.09 degree Celsius/min. None of the monitored sites tracked cerebral temperature well throughout the entire hypothermic period. During rapid temperature change, nasopharyngeal, esophageal, and pulmonary artery temperatures corresponded to brain temperature with smaller mean differences than did those of the tympanic membrane, bladder, rectum, axilla, and sole of the foot. At circulatory arrest, nasopharyngeal, esophageal, and pulmonary artery mean temperatures were within 1 degree Celsius of brain temperature, even though individual patients frequently exhibited disparate values at those sites.

Conclusions

When profound hypothermia is rapidly induced and reversed, temperature measurements made at standard monitoring sites may not reflect cerebral temperature. Measurements from the nasopharynx, esophagus, and pulmonary artery tend to match brain temperature best but only with an array of data can one feel comfortable disregarding discordant readings.

Related Topics

    loading  Loading Related Articles