Dual Actions of Volatile Anesthetics on GABAA IPSCs: Dissociation of Blocking and Prolonging Effects

    loading  Checking for direct PDF access through Ovid


BackgroundVolatile agents alter inhibitory postsynaptic currents (IPSCs) at clinically relevant concentrations, an action that is thought to make an important contribution to their behavioral effects. The authors investigated the mechanisms underlying these effects by evaluating the concentration dependence of modulation by enflurane, isoflurane, and halothane of IPSCs in rat hippocampal slices.MethodsAction potential-independent gamma-aminobutyric acidA IPSCs (miniature IPSCs [mIPSCs]) were recorded from CA1 pyramidal neurons. The effects on mIPSC amplitude were used to distinguish between presynaptic (altered release) and postsynaptic (altered receptor response) actions of volatile agents. The concentration dependence of blocking and prolonging actions was compared among the volatile agents to determine whether a single modulatory process could account for both effects.ResultsThe application of volatile anesthetics prolonged the decay and reduced the amplitude of mIPSCs in a dose-dependent manner. The effects on decay time for isoflurane and enflurane could not be distinguished. However, the blocking effect of enflurane was significantly greater than that of isoflurane at all concentrations. Despite the blocking effect, the net action of these agents was enhanced inhibition, because charge transfer was always significantly greater than control. Isoflurane, and to a lesser extent enflurane and halothane, caused a picrotoxin-sensitive increase in baseline noise. Moderate increases in mIPSC frequency were also observed for all agents.ConclusionsThese results show that enflurane, isoflurane, and halothane reduce IPSC amplitude through a direct postsynaptic action. Furthermore, the concentration dependence of the actions of the agents reveals a dissociation between the effects on the amplitude and the time course of IPSCs, suggesting that distinct mechanisms underlie the two actions.

    loading  Loading Related Articles