Insulinlike Growth Factor-I–Mediated Migration and Invasion of Human Colon Carcinoma Cells Requires Activation of c-Met and Urokinase Plasminogen Activator Receptor

    loading  Checking for direct PDF access through Ovid


Objective:To determine whether insulinlike growth factor-I (IGF-I) and hepatocyte growth factor (HGF) cooperate to induce migration and invasion of human colorectal carcinoma (CRC) cells and whether the effects of IGF-I and/or HGF are mediated through activation of the urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system, a central mediator of tumor-cell migration and invasion.Summary Background Data:CRC cells must invade through the basement membrane of the colon and migrate to form metastases. CRC cells are known to overexpress IGF-I receptor (IGF-IR), c-Met, and uPAR, 3 cell-surface receptors known to mediate cell migration and invasion. We hypothesized that IGF-IR and c-Met cooperate to induce migration and invasion in CRC cells and that this signaling is dependent on uPAR.Methods:KM12L4 human CRC cells were treated with IGF-I, HGF, or IGF-I + HGF in transwell migration and invasion chambers; cells that had migrated or invaded were counted. To determine the role of c-Met in IGF-I-induced migration and invasion, c-Met was inhibited by infection of cells with an adenovirus containing a c-Met ribozyme; transwell assays were then repeated. To determine the role of the uPA/uPAR system in IGF-I-induced CRC cell migration and invasion, transwell assays were repeated after pretreating cells with the uPA inhibitor amiloride or with neutralizing antibodies to uPA and uPAR.Results:IGF-I and HGF, alone or in combination, increased cell migration and invasion. The c-Met ribozyme inhibited IGF-I- and HGF-mediated migration and invasion, indicating that c-Met is essential for these processes. uPA and uPAR inhibition blocked IGF-I- and HGF-mediated migration and invasion, suggesting that uPAR is downstream of IGF/IGF-IR and HGF/c-Met in the signaling pathways that mediate cell migration and invasion.Conclusions:IGF-I and HGF cooperate to induce migration and invasion of CRC cells, and c-Met and uPA/uPAR are required for IGF-I-mediated migration and invasion. In our in vitro model of CRC migration and invasion, uPA and uPAR appear to be downstream of IGF-IR and c-Met and are required for migration and invasion. Elucidation of the pathways that contribute to tumor progression and metastasis should provide a foundation for the rational development and use of targeted therapies for CRC.

    loading  Loading Related Articles