Mechanisms of persistent atrial fibrillation


    loading  Checking for direct PDF access through Ovid

Abstract

Purpose of reviewAtrial fibrillation is the most common sustained arrhythmia, but its mechanisms are poorly understood. In particular, little is known about the factors that contribute to the establishment of persistent or permanent atrial fibrillation. This review addresses possible common signaling pathways that might promote both structural and electrical remodeling of the atria, thus contributing to atrial fibrillation perpetuation.Recent findingsSustained atrial fibrillation may trigger an inflammatory response leading to activation of myofibroblasts and to the release of cytokines such as transforming growth factor-β and platelet-derived growth factor, as well as profibrotic proteins such as galectin-3. Activation of signaling cascades involving such proteins is critical for the development of fibrosis and may also lead to ion channel dysfunction, which, along with myocyte apoptosis and extracellular matrix generation and turnover, likely contributes to both electrical and structural remodeling and predisposes to atrial fibrillation.SummaryIdentifying upstream strategies targeting molecular pathways that are common to fibrosis and electrical remodeling leading to atrial fibrillation perpetuation is highly desirable. This would facilitate finding new target genes with pleiotropic effects on the expression of ion channel proteins in myocytes and profibrotic molecules in nonmyocyte cells that are important for pathologic remodeling, which could become an important goal in persistent atrial fibrillation therapy.

    loading  Loading Related Articles