Plasticity in the motor system related to therapy-induced improvement of movement after stroke


    loading  Checking for direct PDF access through Ovid

Abstract

Neuroplasticity might play a beneficial role in the recovery of function after stroke but empirical evidence for this is lacking thus far. Constraint-induced (CI) therapy was used to increase the use of a paretic upper extremity in four hemiparetic stroke patients. Dipole modeling of steady-state movement-related cortical potentials was applied before and after training and 3 months later. The source locations associated with affected hand movement were unusual at follow-up because activation of the ipsilateral hemisphere was found in the absence of mirror movements of the unaffected hand. This long-term change may be considered as an initial demonstration of large-scale neuroplasticity associated with increased use of the paretic limb after application of CI therapy.

    loading  Loading Related Articles