Rapid eye movement-related brain activation in human sleep: a functional magnetic resonance imaging study

    loading  Checking for direct PDF access through Ovid


In animal models, ponto-geniculo-occipital waves appear as an early sign of rapid eye movement sleep and may be functionally significant for brain plasticity processes. In this pilot study, we use a combined polysomnographic and functional magnetic resonance imaging approach, and show distinct magnetic resonance imaging signal increases in the posterior thalamus and occipital cortex in close temporal relationship to rapid eye movements during human rapid eye movement sleep. These findings are consistent with cell recordings in animal experiments and demonstrate that functional magnetic resonance imaging can be utilized to detect ponto-geniculo-occipital-like activity in humans. Studying intact neuronal networks underlying sleep regulation is no longer confined to animal models, but has been shown to be feasible in humans by a combined functional magnetic resonance imaging and electroencephalograph approach.

    loading  Loading Related Articles