Voltage-clamp errors cause anomalous interaction between independent ion channels

    loading  Checking for direct PDF access through Ovid

Abstract

In voltage-clamp, uncompensated series resistance results in steady-state voltage errors that scale with the amplitude of the elicited current and are often correctable offline. However, while investigating mechanoelectric transduction currents at hair cells' resting potential, voltage-gated calcium channels and calcium-activated potassium channels (BK) were activated in voltage-clamp by displacing the sensory hair bundle. This resulted from steady-state voltage errors (<1.5 mV) induced by series resistance changing the holding potential. Thus, uncompensated series resistance, interacting with an elicited current, resulted in a voltage error that could induce the erroneous activation of other currents. This error is not correctable offline. Recognizing this type of error is critical when investigating multiple voltage-dependent conductances with steep voltage dependence.

Related Topics

    loading  Loading Related Articles