logo

Reducing Circumduction and Hip Hiking During Hemiparetic Walking Through Targeted Assistance of the Paretic Limb Using a Soft Robotic Exosuit

    loading  Checking for direct PDF access through Ovid

Abstract

Objective

The aim of the study was to evaluate the effects on common poststroke gait compensations of a soft wearable robot (exosuit) designed to assist the paretic limb during hemiparetic walking.

Design

A single-session study of eight individuals in the chronic phase of stroke recovery was conducted. Two testing conditions were compared: walking with the exosuit powered versus walking with the exosuit unpowered. Each condition was 8 minutes in duration.

Results

Compared with walking with the exosuit unpowered, walking with the exosuit powered resulted in reductions in hip hiking (27 [6%], P = 0.004) and circumduction (20 [5%], P = 0.004). A relationship between changes in knee flexion and changes in hip hiking was observed (Pearson r = −0.913, P < 0.001). Similarly, multivariate regression revealed that changes in knee flexion (β = −0.912, P = 0.007), but not ankle dorsiflexion (β = −0.194, P = 0.341), independently predicted changes in hip hiking (R2= 0.87, F(2, 4) = 13.48, P = 0.017).

Conclusions

Exosuit assistance of the paretic limb during walking produces immediate changes in the kinematic strategy used to advance the paretic limb. Future work is necessary to determine how exosuit-induced reductions in paretic hip hiking and circumduction during gait training could be leveraged to facilitate more normal walking behavior during unassisted walking.

    loading  Loading Related Articles

Join Ovid Insights!

Benefits of Ovid Insights Include:

  • Consolidated email digests of the latest research in your favorite topics
  • A personalized dashboard of your topics all on one page 
  • Tools to bookmark and share articles of interest
  • Ability to customize and save your own searches

Register with Ovid Insights »