Epigenetics of inflammatory arthritis

    loading  Checking for direct PDF access through Ovid


Purpose of reviewAberrant epigenetic changes in DNA methylation, histone marks, and noncoding RNA expression regulate the pathogenesis of many rheumatic diseases. The present article will review the recent advances in the epigenetic profile of inflammatory arthritis and discuss diagnostic biomarkers and potential therapeutic targets.Recent findingsMethylation signatures of fibroblast-like synoviocytes not only distinguish rheumatoid arthritis (RA) and osteoarthritis (OA), but also early RA from late RA or juvenile idiopathic arthritis. Methylation patterns are also specific to individual joint locations, which might explain the distribution of joint involvement in some rheumatic diseases. Hypomethylation in systemic lupus erythematosus (SLE) T cells is, in part, because of active demethylation and 5-hydroxymethylation. The methylation status of some genes in SLE is associated with disease severity and has potential as a diagnostic marker. An integrative analysis of OA methylome, transcriptome, and proteome in chondrocytes has identified multiple-evidence genes that might be evaluated for therapeutic potential. Class-specific histone deacetylase inhibitors are being evaluated for therapy in inflammatory arthritis.SummaryDisease pathogenesis is regulated by the interplay of genetics, environment, and epigenetics. Understanding how these mechanisms regulate cell function in health and disease has implications for individualized therapy.

    loading  Loading Related Articles