Effective Treatment of Osteomyelitis with Biodegradable Microspheres in a Rabbit Model

    loading  Checking for direct PDF access through Ovid


Biodegradable microspheres were manufactured from a high molecular weight copolymer of 50% lactic and 50% glycolic acid and the antibiotic tobramycin. It was hypothesized that the microspheres would be more effective than polymethylmethacrylate beads in the local delivery of tobramycin and that the microspheres would not inhibit bone healing. Osteomyelitis was established in 40 New Zealand White rabbits using Staphylococcus aureus. All animals had irrigation and debridement of the infected radii four weeks after inoculation and were divided into five treatment groups: debridement alone, microspheres alone, microspheres containing tobramycin plus parenteral treatment with cefazolin, polymethylmethacrylate beads containing tobramycin plus parenteral cefazolin, and parenteral cefazolin. All animals were sacrificed after 4 weeks of treatment. The group treated with microspheres plus parenteral antibiotics was the only group to have a significantly higher percentage of animals without bacteria after 4 weeks of treatment when compared with the control group. Additionally, the animals treated with microspheres had a higher degree of bone healing in the defect than the animals treated with bone cement. The most effective treatment was biodegradable microspheres combined with parenteral antibiotic in this rabbit osteomyelitis model.

Related Topics

    loading  Loading Related Articles