Determination of Burn Patient Outcome by Large-Scale Quantitative Discovery Proteomics

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives:

Emerging proteomics techniques can be used to establish proteomic outcome signatures and to identify candidate biomarkers for survival following traumatic injury. We applied high-resolution liquid chromatography-mass spectrometry and multiplex cytokine analysis to profile the plasma proteome of survivors and nonsurvivors of massive burn injury to determine the proteomic survival signature following a major burn injury.

Design:

Proteomic discovery study.

Setting:

Five burn hospitals across the United States.

Patients:

Thirty-two burn patients (16 nonsurvivors and 16 survivors), 19–89 years old, were admitted within 96 hours of injury to the participating hospitals with burns covering more than 20% of the total body surface area and required at least one surgical intervention.

Interventions:

None.

Measurements and Main Results:

We found differences in circulating levels of 43 proteins involved in the acute-phase response, hepatic signaling, the complement cascade, inflammation, and insulin resistance. Thirty-two of the proteins identified were not previously known to play a role in the response to burn. Interleukin-4, interleukin-8, granulocyte macrophage colony-stimulating factor, monocyte chemotactic protein-1, and β2-microglobulin correlated well with survival and may serve as clinical biomarkers.

Conclusions:

These results demonstrate the utility of these techniques for establishing proteomic survival signatures and for use as a discovery tool to identify candidate biomarkers for survival. This is the first clinical application of a high-throughput, large-scale liquid chromatography-mass spectrometry-based quantitative plasma proteomic approach for biomarker discovery for the prediction of patient outcome following burn, trauma, or critical illness.

Related Topics

    loading  Loading Related Articles