Environmental Radon and Cancer Correlations in Maine

    loading  Checking for direct PDF access through Ovid

Abstract

Abstract

The distribution of 222Rn has been measured in the sixteen counties of Maine, U.S.A. by liquid scintillation counting of water samples from more than two thousand public and private wells. Three hundred and fifty of these wells have been characterized for geology and hydrology. Airborne radon has been measured in seventy houses with grab samples and in eighteen houses for 5–7 days each with continuously recording diffusion-electrostatic radon detectors. Concentrations of radon in water ranged from 20 to 180,000 pCi/l. Granite areas yielded the highest average levels (x=22,100 pCi/l.; n=136), with considerable intra-granite variation. Metasedimentary rocks yielded levels characteristic of the lithology for metamorphic grades ranging from chlorite to andalusite. Sillimanite and higher-grade rocks yielded higher 222Rn levels, probably due to the intrusion of uranium-bearing pegmatites in these terranes. Airborne 222Rn in homes ranged from 0.05 to 210 pCi/l. At the high end of this range, doses will exceed recommended industrial limits. In some homes only a small fraction of the airborne 222Rn was due to the water supply. Average 222Rn levels in domestic water supplies for each of the 16 counties, calculated by areally averaging rock types and their associated 222Rn levels, were found to be significantly correlated with rates for all cancers combined and rates for lung and reproductive cancers in the counties. Although numerous factors other than cancer induction by indoor daughter exposures may be responsible for the observed correlations, these have not been investigated in detail.

    loading  Loading Related Articles