Perfusion Characteristics of Radiation-Injured Lung on Gd-DTPA-Enhanced Dynamic Magnetic Resonance Imaging

    loading  Checking for direct PDF access through Ovid


rationale and objectives.

A contrast-enhanced dynamic magnetic resonance (MR) study was performed experimentally and clinically to describe perfusion characteristics of radiation-injured lung according to pathologic phases.


The MR study was performed before and at 0.5, 1, 2, 3, 4, and 7 months after 40 Gy-dose irradiation to the right hemithorax in 8 dogs, and clinically in 12 lung lesions of 9 patients with acute or fibrotic radiation pneumonitis. Altered Gd-DTPA kinetics in the affected lungs was assessed by time-signal intensity curves. MR findings were correlated with lung histology and CT images.


Within 1 month after irradiation, the irradiated animal lungs showed focal and persistent contrast enhancement relative to nonirradiated lungs. This abnormality was pronounced during the next 2 months. After 4 months, irradiated lungs conversely showed lower enhancement during the Gd-DTPA first-pass but were followed by persistently greater enhancement during Gd-DTPA redistribution phase. Similar differences in enhancement abnormalities between acute and fibrotic radiation pneumonitis were clinically observed.


These findings indicate that Gd-DTPA kinetics can be altered according to the histopathologic change in early/acute radiation pneumonitis and radiation fibrosis and that the contrast-enhanced perfusion MRI may help differentiate the phases of radiation pneumonitis.

Related Topics

    loading  Loading Related Articles