Does a Critical Rotator Cuff Tear Stage Exist?: A Biomechanical Study of Rotator Cuff Tear Progression in Human Cadaver Shoulders

    loading  Checking for direct PDF access through Ovid


Background:It is unknown at which stage of rotator cuff tear the biomechanical environment is altered. The purpose of this study was to determine if a critical rotator cuff tear stage exists that alters glenohumeral joint biomechanics throughout the rotational range of shoulder motion, and to evaluate the biomechanical effect of parascapular muscle-loading.Methods:Eight cadaver shoulders were used with a custom testing system. Four progressive rotator cuff tear stages were investigated on the basis of footprint anatomy. Three muscle-loading conditions were examined: rotator cuff only; rotator cuff with deltoid muscle; and rotator cuff, deltoid, pectoralis major, and latissimus dorsi muscles. Testing was performed in the scapular plane with 0°, 30°, and 60° of shoulder abduction. The maximum internal and external rotations were measured with 3.4 Nm of torque. The position of the humeral head apex with respect to the glenoid was calculated with use of a MicroScribe 3DLX digitizing system throughout the rotational range of motion. The abduction capability was determined as the abduction angle achieved with increasing deltoid load.Results:Tear of the entire supraspinatus tendon significantly increased maximum external rotation and significantly decreased abduction capability with higher deltoid loads (p < 0.05). Tear of the entire supraspinatus tendon and half of the infraspinatus tendon significantly shifted the humeral head apex posteriorly at the midrange of rotation and superiorly at maximum internal rotation (p < 0.05). Loading the pectoralis major and latissimus dorsi muscles decreased the amount of humeral head elevation due to deltoid loading.Conclusions:Tear of the entire supraspinatus tendon was the critical stage for increasing rotational range of shoulder motion and for decreased abduction capability. Further tear progression to the infraspinatus muscle was the critical stage for significant changes in humeral head kinematics. The pectoralis major and latissimus dorsi muscles played an important role in stabilizing the humeral head as the rotator cuff tear progressed.Clinical Relevance:Early detection of rotator cuff tear, followed by proper management, may prevent detrimental biomechanical alterations and improve patient outcome.

    loading  Loading Related Articles