Automated Image Registration: II. Intersubject Validation of Linear and Nonlinear Models

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

Our goal was to validate linear and nonlinear intersubject image registration using an automated method (AIR 3.0) based on voxel intensity.

Method

PET and MRI data from 22 normal subjects were registered to corresponding averaged PET or MRI brain atlases using several specific linear and nonlinear spatial transformation models with an automated algorithm. Validation was based on anatomically defined landmarks.

Results

Automated registration produced results that were superior to a manual nine parameter variant of the Talairach registration method. Increasing the degrees of freedom in the spatial transformation model improved the accuracy of automated intersubject registration.

Conclusion

Linear or nonlinear automated intersubject registration based on voxel intensities is computationally practical and produces more accurate alignment of homologous landmarks than manual nine parameter Talairach registration. Nonlinear models provide better registration than linear models but are slower.

Related Topics

    loading  Loading Related Articles