The Relationship Between Severity of Illness and Hospital Length of Stay and Mortality


    loading  Checking for direct PDF access through Ovid

Abstract

To address the question of quantification of severity of illness on a wide scale, the Computerized Severity Index (CSI) was developed by a research team at the Johns Hopkins University. This article describes an initial assessment of some aspects of the validity and reliability of the CSI on a sample of 2,378 patients within 27 high-volume DRGs from five teaching hospitals. The 27 DRGs predicted 27% of the variation in LOS, while DRGs adjusted for Admission CSI scores predicted 38% and DRGs adjusted for Maximum CSI scores throughout the hospital stay predicted 54% of this variation. Thus, the Maximum CSI score increased the predictability of DRGs by 100%. We explored the impact of including a 7-day cutoff criterion along with the Maximum CSI score similar to a criterion used in an alternative severity of illness measure. The DRG/Maximum CSI score's predictive power increased to 63% when the 7-day cutoff was added to the CSI definition. The Admission CSI score was used to predict in-hospital mortality and correlated R = 0.603 with mortality. The reliability of Admission and Maximum CSI data collection was high, with agreement of 95% and kappa statistics of 0.88 and 0.90, respectively.

    loading  Loading Related Articles