Time Course of Neuromuscular Alterations during a Prolonged Running Exercise

    loading  Checking for direct PDF access through Ovid


PLACE, N., R. LEPERS, G. DELEY, and G. Y. MILLET. Time Course of Neuromuscular Alterations during a Prolonged Running Exercise. Med. Sci. Sports Exerc., Vol. 36, No. 8, pp. 1347–1356, 2004.Purpose:This study investigated the time course of contractile and neural alterations of knee extensor (KE) muscles during a long-duration running exercise.Methods:Nine well-trained triathletes and endurance runners sustained 55% of their maximal aerobic velocity (MAV) on a motorized treadmill for a period of 5 h. Maximal voluntary contraction (MVC), maximal voluntary activation level (%VA), and electrically evoked contractions (single and tetanic stimulations) of KE muscles were evaluated before, after each hour of exercise during short (10 min) interruptions, and at the end of the 5-h period. Oxygen uptake was also measured at regular intervals during the exercise.Results:Reductions of MVC and %VA were significant after the 4th hour of exercise and reached −28% (P < 0.001) and −16% (P < 0.01) respectively at the end of the exercise. The reduction in MVC was highly correlated with the decline of %VA (r = 0.98, P < 0.001). M-wave was also altered after the fourth hour of exercise (P < 0.05) in both vastus lateralis and rectus femoris muscles. Peak twitch was potentiated at the end of the exercise (+18%, P = 0.01); 20- and 80-Hz maximal tetanic forces were not altered by the exercise. Oxygen uptake increased linearly during the running period (+18% at 5 h, P < 0.001).Conclusion:These findings suggest that KE maximal voluntary force generating capability is depressed in the final stages of a 5-h running exercise. Central activation failure and alterations in muscle action potential transmission were important mechanisms contributing to the impairment of the neuromuscular function during prolonged running.

    loading  Loading Related Articles