Vibration Exposure and Biodynamic Responses during Whole-Body Vibration Training

    loading  Checking for direct PDF access through Ovid



Excessive, chronic whole-body vibration (WBV) has a number of negative side effects on the human body, including disorders of the skeletal, digestive, reproductive, visual, and vestibular systems. Whole-body vibration training (WBVT) is intentional exposure to WBV to increase leg muscle strength, bone mineral density, health-related quality of life, and decrease back pain. The purpose of this study was to quantitatively evaluate vibration exposure and biodynamic responses during typical WBVT regimens.


Healthy men and women (N = 16) were recruited to perform slow, unloaded squats during WBVT (30 Hz; 4 mm p-p), during which knee flexion angle (KA), mechanical impedance, head acceleration (Harms), and estimated vibration dose value (eVDV) were measured. WBVT was repeated using two forms of vibration: 1) vertical forces to both feet simultaneously (VV), and 2) upward forces to only one foot at a time (RV).


Mechanical impedance varied inversely with KA during RV (effect size, ηp2: 0.668, P < 0.01) and VV (ηp2: 0.533, P < 0.05). Harms varied with KA (ηp2: 0.686, P < 0.01) and is greater during VV than during RV at all KA (P < 0.01). The effect of KA on Harms is different for RV and VV (ηp2: 0.567, P < 0.05). The eVDV associated with typical RV and VV training regimens (30 Hz, 4 mm p-p, 10 min·d−1) exceeds the recommended daily vibration exposure as defined by ISO 2631-1 (P < 0.01).


ISO standards indicate that 10 min·d−1 WBVT is potentially harmful to the human body; the risk of adverse health effects may be lower during RV than VV and at half-squats rather than full-squats or upright stance. More research is needed toexplore the long-term health hazards of WBVT.

Related Topics

    loading  Loading Related Articles