Energy Cost of Physical Activities in Children: Validation of SenseWear Armband

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose:

To examine the validity of SenseWear Pro2 Armband in assessing energy cost of physical activities in children, and to contribute with values of energy costs in an overview of physical activities in children.

Methods:

Energy cost was assessed by SenseWear Pro2 Armband in 20 healthy children, 11-13 yr, while lying down resting, sitting playing games on mobile phone, stepping up and down on a step board, bicycling on a stationary bike, jumping on a trampoline, playing basketball, and walking/running on a treadmill at the speeds 2, 3, 4, 5, 6, 7, 8, and 10 km·h−1. During these activities, energy cost was also assessed from V˙O2 and V˙CO2 measured by Oxycon Mobile portable metabolic system, which was used as criterion method.

Results:

The difference in energy cost between SenseWear Pro2 Armband and Oxycon Mobile was −0.7 (0.5) (P < 0.001) for resting, −2.0 (0.9) (P < 0.001) for playing games on mobile phone, −6.6 (2.3) (P < 0.001) for stepping on the step board, −12.0 (3.7) (P < 0.001) for bicycling, −2.7 (11.9) (P = 0.34) for jumping on the trampoline, and −14.8 (6.4) kJ·min−1 (P < 0.001) for playing basketball. The difference in energy cost between SenseWear Pro2 Armband and Oxycon Mobile for increasing treadmill speed was 1.3 (3.1) (P = 0.048), 0.1 (2.9) (P = 0.82), −1.2 (2.6) (P = 0.049), −1.6 (3.2) (P = 0.044), −3.1 (3.7) (P = 0.0013), −4.9 (3.7) (P < 0.001), −5.3 (3.7) (P < 0.001), and −11.1 (3.5) kJ·min−1 (P < 0.001).

Conclusions:

SenseWear Pro2 Armband underestimated energy cost of most activities in this study, an underestimation that increased with increased physical activity intensity. A table of energy costs (MET values) of physical activities in children measured by indirect calorimetry is presented as an initiation of the creation of a compendium of physical activities in children.

Related Topics

    loading  Loading Related Articles