Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

This study developed and tested an algorithm to classify accelerometer data as walking or nonwalking using either GPS or travel diary data within a large sample of adults under free-living conditions.

Methods

Participants wore an accelerometer and a GPS unit and concurrently completed a travel diary for seven consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or nonwalking based on a decision-tree algorithm consisting of seven classification scenarios. Algorithm reliability was examined relative to two independent analysts’ classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts.

Results

The 706 participants’ (mean age = 51 yr, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified PA into 8170 walking bouts (58.5 %) and 5337 nonwalking bouts (38.2%); 464 bouts (3.3%) were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the nonwalking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean ± SD duration of PA bouts classified as walking was 15.2 ± 12.9 min. On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day.

Conclusions

GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or nonwalking behavior.

Related Topics

    loading  Loading Related Articles