Activity Recognition Using a Single Accelerometer Placed at the Wrist or Ankle

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

Large physical activity surveillance projects such as the UK Biobank and NHANES are using wrist-worn accelerometer-based activity monitors that collect raw data. The goal is to increase wear time by asking subjects to wear the monitors on the wrist instead of the hip, and then to use information in the raw signal to improve activity type and intensity estimation. The purposes of this work was to obtain an algorithm to process wrist and ankle raw data and to classify behavior into four broad activity classes: ambulation, cycling, sedentary, and other activities.

Methods

Participants (N = 33) wearing accelerometers on the wrist and ankle performed 26 daily activities. The accelerometer data were collected, cleaned, and preprocessed to extract features that characterize 2-, 4-, and 12.8-s data windows. Feature vectors encoding information about frequency and intensity of motion extracted from analysis of the raw signal were used with a support vector machine classifier to identify a subject’s activity. Results were compared with categories classified by a human observer. Algorithms were validated using a leave-one-subject-out strategy. The computational complexity of each processing step was also evaluated.

Results

With 12.8-s windows, the proposed strategy showed high classification accuracies for ankle data (95.0%) that decreased to 84.7% for wrist data. Shorter (4 s) windows only minimally decreased performances of the algorithm on the wrist to 84.2%.

Conclusions

A classification algorithm using 13 features shows good classification into the four classes given the complexity of the activities in the original data set. The algorithm is computationally efficient and could be implemented in real time on mobile devices with only 4-s latency.

Related Topics

    loading  Loading Related Articles