Altered Running Economy Directly Translates to Altered Distance-Running Performance

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

Our goal was to quantify if small (1%–3%) changes in running economy quantitatively affect distance-running performance. Based on the linear relationship between metabolic rate and running velocity and on earlier observations that added shoe mass increases metabolic rate by ~1% per 100 g per shoe, we hypothesized that adding 100 and 300 g per shoe would slow 3000-m time-trial performance by 1% and 3%, respectively.

Methods

Eighteen male sub-20-min 5-km runners completed treadmill testing, and three 3000-m time trials wearing control shoes and identical shoes with 100 and 300 g of discreetly added mass. We measured rates of oxygen consumption and carbon dioxide production and calculated metabolic rates for the treadmill tests, and we recorded overall running time for the time trials.

Results

Adding mass to the shoes significantly increased metabolic rate at 3.5 m·s−1 by 1.11% per 100 g per shoe (95% confidence interval = 0.88%–1.35%). While wearing the control shoes, participants ran the 3000-m time trial in 626.1 ± 55.6 s. Times averaged 0.65% ± 1.36% and 2.37% ± 2.09% slower for the +100-g and +300-g shoes, respectively (P < 0.001). On the basis of a linear fit of all the data, 3000-m time increased 0.78% per added 100 g per shoe (95% confidence interval = 0.52%–1.04%).

Conclusion

Adding shoe mass predictably degrades running economy and slows 3000-m time-trial performance proportionally. Our data demonstrate that laboratory-based running economy measurements can accurately predict changes in distance-running race performance due to shoe modifications.

Related Topics

    loading  Loading Related Articles