Rhodopsin-family receptors associate with small G proteins to activate phospholipase D

    loading  Checking for direct PDF access through Ovid


G-protein-coupled receptors of the rhodopsin family transduce many important neural and endocrine signals. These receptors activate heterotrimeric G proteins and in many cases also cause activation of phospholipase D, an enzyme that can be controlled by the small G proteins ARF and RhoA [1-3]. Here we show that the activation of phospholipase D that is induced by many, but not all, Ca2+-mobilizing G-protein-coupled receptors is sensitive to inhibitors of ARF and of RhoA. Receptors of this type were co-immunoprecipitated with ARF or RhoA on exposure to agonists, and the effects of GTP analogues on ligand binding to the receptor changed to a profile that is characteristic of small G proteins. These receptors contain the amino-acid sequence AsnProXXTyr in their seventh transmembrane domain, whereas receptors capable of activating phospholipase D without involving ARF contain the sequence AspProXXTyr. Mutation of this latter sequence to AsnProXXTyr in the gonadotropin-releasing hormone receptor conferred sensitivity to an inhibitor of ARF, and the reciprocal mutation in the 5-HT sub 2A receptor for 5-hydroxytryptamine reduced its sensitivity to the inhibitor. Receptors carrying the AsnProXXTyr motif thus seem to form functional complexes with ARF and RhoA.

Related Topics

    loading  Loading Related Articles