Heme oxygenase-1 system in organ transplantation1


    loading  Checking for direct PDF access through Ovid

Abstract

The heme oxygenase-1 (HO-1) system, the rate-limiting step in the conversion of heme, is among the most critical of cytoprotective mechanisms activated during cellular stress. The cytoprotection may result from the elimination of heme and the function of HO-1 downstream mediators, that is, biliverdin, carbon monoxide, and free iron. HO-1 overexpression exerts beneficial effects in a number of transplantation models, including antigen-independent ischemia/reperfusion injury, acute and chronic allograft rejection, and xenotransplantation. The HO-1 system is thought to exert four major functions: (1) antioxidant function; (2) maintenance of microcirculation; (3) modulatory function upon the cell cycle; and (4) anti-inflammatory function. The antioxidant function depends on heme degradation, oxygen consumption, biliverdin, and production of ferritin via iron accumulation. The production of carbon monoxide, which has vasodilation and antiplatelet aggregation properties, maintains tissue microcirculation and may be instrumental in antiapoptotic and cell arrest mechanisms. Heme catabolism and HO-1 overexpression exert profound direct and indirect inhibitory effects on the cascade of host inflammatory responses mediated by neutrophils, macrophages, and lymphocytes. These anti-inflammatory properties result in cytoprotection in a broad spectrum of graft injury experimental models, including ischemia/reperfusion, acute and chronic allograft, and xenotransplant rejection. Further, the multifaceted targets of HO-1–mediated cytoprotection may simultaneously benefit both local graft function and host systemic immune responses. Thus, the HO-1 system serves as a novel therapeutic concept in organ transplantation.

    loading  Loading Related Articles