Pharmacologic investigation of the mechanism underlying cold allodynia using a new cold plate procedure in rats with chronic constriction injuries

    loading  Checking for direct PDF access through Ovid


Cold allodynia is a frequent clinical symptom of patients with neuropathic pain. Despite numerous studies of cold allodynia, using animal models of neuropathic pain, little is known about its underlying mechanisms. This study was performed to establish a method for the pharmacologic evaluation of cold allodynia using several analgesics in a chronic constriction injury (CCI) rat model of neuropathic pain. Compared with the results obtained before the CCI operation, the CCI rats placed on a cork plate at 20°C exhibited a slight change in the paw withdrawal latency because of the mechanical stimulus mediated by the injured paw touching the plate. By contrast, there was a significant reduction in the paw withdrawal latency on a cold metal plate compared with that on the cork plate after the CCI surgery, with the maximum decrease occurring on postoperative day 7. This reduction is thought to specifically reflect cold-induced pain behavior. In addition, both naïve and CCI rats showed behavioral changes at 5 and 0°C, but not at 10°C or higher. Interestingly, a subcutaneous morphine dose of 6 mg/kg completely inhibited cold allodynia induced at 10°C on postoperative day 7. Under this condition, both the sodium channel blocker mexiletine (10 and 30 mg/kg, subcutaneously) and the calcium channel α2δ subunit blocker pregabalin (30 and 100 mg/kg, orally) significantly suppressed cold allodynia. Additionally, both resiniferatoxin (0.3 mg/kg, subcutaneously), an ultrapotent analog of capsaicin that desensitizes C fibers, and the VR1 channel antagonist N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl) tetrahydropyrazine-1(2H)-carboxamide (10 and 30 mg/kg, orally) significantly prolonged the paw withdrawal latency. In conclusion, our data suggest that the activation of C fibers mediates cold allodynia.

    loading  Loading Related Articles